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Piezo Ceramic Vibration Harvester

• Piezo bulk ceramic Bi- and Tri-morphs used 

for more than 25 years in vibration harvester

• Bi- and Tri-morphs mostly used in resonance 

mode applications

• Electromagnetic harvester are normally 

outperforming bi- and tri-morph bulk ceramic 

harvester, especially in low frequency 

applications due to

– price

– reliability, lifetime

– low impedance in non-resonant or low frequency 

applications, yielding higher output

– availability

Photos courtesy Morgan Electro, EnOcean
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New Piezo Vibration Harvester 

• Starting by the end of 1999 new piezo ceramic based 

products and technologies became commercially 

available which were quickly used for vibration 

harvester as well:

– Piezo ceramic composites in form of an Advanced Low 

Profile Actuator (ALPA)

– MEMs

– Magneto strictive devices

– Thin film piezo ceramic devices

• Focus on Macro Fiber Composite as a member of the 

ALPA family which are improving the application 

envelope compared with bulk bi- and tri-morphs in 

vibration harvester
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MFC – excellent match for vibration energy harvesting

• MFC – Macro Fiber Composites developed 
at NASA LaRC during the late `90s

• Actuator (1Hz to 10kHz) 

• Sensor (0.5 Hz up to 500kHz)

• Flexible and robust, ready to use package, 
overcomes disadvantages of solid PZT 
plates or patches based on solid wafers

• Reliable, > 109 cycles as actuator and > 1010

cycles for energy harvesting 

• Broadband, allows for easy non-resonant 
and resonant energy harvesting applications

• Encapsulated and fault tolerant

• Integration of electronic components possible
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ALPA Types and Development History
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ALPAs overcome many problems - but not all

• Improvements for Vibration Harvester over 

existing bulk ceramic Bi-, Tri-morphs 

– flexibility, 

– allow for easy non-resonant applications

– durability, lifetime extended for up to 10
10

cycles, 

critical to advance over batteries or electro magnetic

– low profile, easy integration

• Remaining disadvantages

– price (getting better though)

– high electric impedance, especially at < 5 Hz
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Resonant vs. Non-resonant Vibration Harvesting

Resonant – mechanical transfer of vibration by Cantilever

• Acceleration (G’s) and frequency main design input

• Use of mechanical structure for energy transfer allows to 
adapt operation for prevalent vibration frequency

• Optimum energy harvesting at discrete frequencies only

• Often bulky device, not suitable for large frequency range

Non Resonant - directly attached to strain area

• Strain and frequency is main design input 

• Piezo harvester is attached directly to maximum strain –
area, very small mechanical harvester possible

• Normally not operating at resonance – lower yield 

• Capable of harvesting from broad frequency spectrum

Operat ional m odes
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Low Frequency = Electromagnetic harvester?

• Low frequency < 5 Hz

• Most of the low frequency vibration harvesting 

applications are using electromagnetic systems.

• What advantages over electromagnetic systems do 

ALPAs have?

– dimensions, low profile

– easy mechanical integration, flexible, can be directly attached to 

a node of vibration

– higher stiffness, requires lower deflection 

– typical lower deflection rates sufficient

– weight

– no mechanical moving parts, can be made fully solid state
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Low Frequency Application for ALPAs

• Insole for shoes
– requiring small profile

– encapsulation, waterproof

– long lifetime

• Chest band/Shirt

- translating breathing motions  

in bending of a structure for harvesting 
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Vibration Harvester – Typical Design & Challenge

Vibration Harvester –
ALPA, non-resonant 
integrated in structure, low 
frequency, intermittent use

Conditioner - Integrated 
Energy Management
Rectifier, Impedance Matching, 
Energy Storage, Stabilizer

Electronic Consumer -
Sensor, Amplifier, Micro 
Controller, Radio 
Transceiver 

E-module match, Strain 
optimization (neutral 

fiber, frequency, 
distribution), size

Charge Output

Custom designed 
Conditioner for low 

frequency mandatory, 
due to high electric 

impedance mismatch

Power Consumption over 
time, operating voltage
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Design Challenges to meet

Low frequency < 5Hz and intermittent (not periodic) charge 

generation have specific design challenges for maximum

charge extraction

• High internal impedance, paired with intermittent events 

require a charge coupled design for best and cost 

effective charge extraction

• In a clamped condition, strain distribution needs to be 

addressed with triangle shaped designs to prevent 

asymmetric charge distribution

• Maximum strain and dependant depolarization limits 

have to be considered  
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Basics of power transfer in active dipoles - Compromise
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Dynamic impedance behavior for MFC M2814P2
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Cap to Cap Energy Transfer Loss Problem

With Q = CU and E = ½ C*U² =>

UC1+C2 = ½ UC1

Energy in C1 and C2 after closing  switch = 25% each,

25% is maximum energy extraction!

C1 = C2 optimum energy transfer
Voltage 20 V

C1 170 nF 8528-P2

C1-C2 ratio 0.01 0.02 0.05 0.1 0.2 1 2 5 10 20 50 100

C2 nF 1.7 3.4 8.5 17 34 170 340 850 1700 3400 8500 17000

Initial charge in C1 As 3.4E-06 3.4E-06 3.4E-06 3.4E-06 3.4E-06 3.4E-06 3.4E-06 3.4E-06 3.4E-06 3.4E-06 3.4E-06 3.4E-06

Initial energy in C1 mWs 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034

Voltage after switching V 19.80 19.61 19.05 18.18 16.67 10.00 6.67 3.33 1.82 0.95 0.39 0.20

Charge in C2 As 3.4E-08 6.7E-08 1.6E-07 3.1E-07 5.7E-07 1.7E-06 2.3E-06 2.8E-06 3.1E-06 3.2E-06 3.3E-06 3.4E-06

Energy in C2 mWs 0.00033 0.00065 0.00154 0.00281 0.00472 0.0085 0.00756 0.00472 0.00281 0.00154 0.00065 0.00033

Energy C2 % of initial % 1.0 1.9 4.5 8.3 13.9 25.0 22.2 13.9 8.3 4.5 1.9 1.0

Energy in C1 after switch. mWs 0.03333 0.03268 0.03084 0.0281 0.02361 0.0085 0.00378 0.00094 0.00028 7.7E-05 1.3E-05 3.3E-06

Total Energy after switch mWs 0.0337 0.0333 0.0324 0.0309 0.0283 0.0170 0.0113 0.0057 0.0031 0.0016 0.0007 0.0003

Total Energy as % of initial % 99.01 98.04 95.24 90.91 83.33 50.00 33.33 16.67 9.09 4.76 1.96 0.99
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Charge transfer in clamped device – shape counts

• Rectangular mechanically clamped 

PZT harvester result in uneven 

strain distribution over length

• this might cause device internal 

charge transfer between different 

areas of strain and lower the overall 

charge extraction

• triangle shaped PZT harvester are 

improving the strain distribution and 

overall charge extraction  
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Low Frequency Conditioner EH-CL50 

• Standard PZT Conditioners now available as chipsets or standard 

circuit DO NOT imply good performance for low 

frequency/intermittent harvester applications!

• EH-CL50 special developed piezo ceramic conditioner for P2-type 

MFCs for low frequency/intermittent harvesting applications

• Based on capacitive energy extraction

• automatic capacitance switching and impedance matching 

Patent pending
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Conclusions 
• Low profile piezo composite actuators (ALPA) are significant improvement over 

standard PZT bi- and tri-morphs in vibration energy harvesting applications.

• ALPA have advantages for non-resonant energy harvesting by applying them 

directly to vibration nodes.

• In low frequency, intermittent modes ALPAs have advantages over normally 

used electromagnetic systems, especially if weight, dimensions are critical and a 

non-moving parts design is important.

• Intrinsic high impedance of piezo ceramic harvester at low frequencies require 

special designed Conditioner circuits, normally charge coupled designs (cap to 

cap) for size and cost reasons.

• Off-the-shelve conditioners and harvester chipsets are not implicitly efficient in 

low frequency harvesting applications.

• Cap-to-cap designs limit maximum energy extraction to 25%, in general total 

system performance is more near 10-15% of initial PZT generated energy 

compared with 25-35% for resonant, periodic systems.

• Due to the lower efficacy of low frequency ALPA systems, an even strain 

distribution in the harvester for optimum charge generation is mandatory 

(triangle design)


